Invariant Cubature Formulae for Spheres and Balls

نویسنده

  • YUAN XU
چکیده

Invariant cubature formulae for a class of weight functions on the simplex T d are derived using combinatorial methods, extending the formulae in [Grundmann and Möller, SIAM J. Numer Anal., 15 (1978), pp. 282–290] for the unit weight function on T d. These formulae are used to derive cubature formulae on the surface of the sphere Sd and on the unit ball Bd using connections between cubature formulae on T d, Bd and Sd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Cubature Formulae for Spheres and Balls by Combinatorial Methods

Invariant cubature formulae for a class of weight functions on the simplex T d are derived using combinatorial methods, extending the formulae in [Grundmann and Möller, SIAM J. Numer Anal., 15 (1978), pp. 282–290] for the unit weight function on T . These formulae are used to derive cubature formulae on the surface of the sphere S and on the unit ball B using connections between cubature formul...

متن کامل

Cubature formulae for spheres, simplices and balls

We obtain in explicit form the unique Gaussian cubature for balls (spheres) in Rn based on integrals over balls (spheres), centered at the origin, that integrates exactly all m-harmonic functions. In particular, this formula is exact for all polynomials in n variables of degree 2m − 1. A Gaussian cubature for simplices is also constructed. Upper bounds for the errors for certain smoothness clas...

متن کامل

Orthogonal Polynomials and Cubature Formulae on Spheres and on Balls∗

Orthogonal polynomials on the unit sphere in Rd+1 and on the unit ball in Rd are shown to be closely related to each other for symmetric weight functions. Furthermore, it is shown that a large class of cubature formulae on the unit sphere can be derived from those on the unit ball and vice versa. The results provide a new approach to study orthogonal polynomials and cubature formulae on spheres.

متن کامل

Orthogonal Polynomials and Cubature Formulae on Spheres and on Simplices

Orthogonal polynomials on the standard simplex Σ in R are shown to be related to the spherical orthogonal polynomials on the unit sphere S in R that are invariant under the group Z2×· · ·×Z2. For a large class of measures on S cubature formulae invariant under Z2 × · · · × Z2 are shown to be characterized by cubature formulae on Σ. Moreover, it is also shown that there is a correspondence betwe...

متن کامل

Asymmetric Cubature Formulae with Few Points in High Dimension for Symmetric Measures

Let μ be a positive measure on Rd invariant under the group of reflections and permutations, and m a natural number. We describe a method to construct cubature formulae of degree m with respect to μ, with n positive weights and n points in the support of μ, and such that n grows at most like dm with the dimension d. We apply this method to classical measures to explicitly construct cubature for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000